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Some asymmetric Stokes-flow problems
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Abstract. Solutions are given to a number of asymmetric Stokes-flow problems which involve the slow motion of
a fluid in the presence of a rigid plane containing a circular hole. The particular instances of motion generated
by a linear shear flow along the plane and by a Stokeslet, placed on the axis of symmetry of the hole and oriented
perpendicular to this axis, are examined in detail. The paper concludes with a solution to the shear-flow problem
when the circular hole is replaced by one of elliptical geometry.

1. Introduction

In the theory of filtration flows an important problem concerns the determination of the
force and torque experienced by a sedimenting particle in the proximity of the pore. A simple
model of the pore neglects its length and replaces the fluid-pore geometry by a thin rigid
screen pierced by a circular hole and surrounded by incompressible viscous fluid. When the
sedimenting particle is small compared with the pore radius and the Reynolds number of the
flow is sufficiently small to permit the Stokes linearization of the equations of fluid motion,
a translating or rotating particle can be modelled by means of a Stokeslet or rotlet, dipoles
or higher-order singularities being unnecessary for the computation of lowest-order wall-
effects on the drag and couple experienced by the particle. Thus, in the case of a zero-length
pore, Davis et al. [1] (see also Hasimoto [2]) have solved the axisymmetric Stokeslet and
rotlet problems in which the singularity lies on the axis of symmetry of the screen. Further,
they use the results to compute approximations to the force and couple experienced by a
small body, employing formulae due to Brenner [3]. The more complicated problem of a
semi-infinite length pore communicating with a half-space chamber of fluid has been treated
by Shail and Packham [4], and an investigation of the axisymmetric finite-length pore
configuration is currently being undertaken.

All the afore-mentioned research relates to axisymmetric flows, and the purpose of this
paper is to treat some asymmetric filtration flows, with the pore again modelled by a hole
in a plane rigid wall. Two particular problems are solved, the first being a singularity-free
motion in which a linear shear flow exists along the plane wall in one half-space of fluid, the
motion being communicated via the pore to the liquid in the other half-space. A solution to
this problem, and the two-dimensional situation in which the circular hole is replaced by a
slit, has recently been given by Smith [5], but our approach is somewhat different from his.
In the second configuration the Stokeslet in [1, 4] is replaced by one again on the axis of
symmetry, but now oriented perpendicular to it. This solution is then used in conjunction
with [3] to derive an approximation to the force on an arbitrary body when incident with the
axis of symmetry as it sediments parallel to the membrane.
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In Section 2 we derive a suitable representation of the quasi-steady Stokes velocity and
pressure fields in terms of potential functions, and apply them to the auxiliary problem of
a Stokeslet placed parallel to and in front of a rigid flat wall. In Section 3 both the shear-flow
and Stokeslet problem are solved, and the force calculation is given. Finally, in Section 4 the
solution is found to a further shear-flow configuration, in which the circular pore is replaced
by an elliptical geometry.

2. Basic equations and solutions

The continuity and linearized Navier-Stokes equations governing the steady creeping flow
of an imcompressible fluid in a singularity-free region are

div v = 0, (1)

and

j curl curl v = -Vp, (2)

where v is the velocity field, p the coefficient of viscosity and p the pressure of the fluid. Let
(Q, p, z) denote the cylindrical polar coordinates of the point with position vector r, and
denote by , , z unit vectors in the directions of e-, 4b- and z-increasing, respectively.
Three solutions (vi, Pi), i = 1, 2, 3, of (1) and (2), used by the authors in earlier work
[4, 6, 7], are given by

v = zV OX) z + VX, p, = 2 z2, (3)

v2 = zV -qTz, P2 = 2p (4)

y.

z

Fig. 1. A Stokeslet placed parallel to the x-axis in front of the rigid plate z = 0.
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and

V3 = curl (Oz), p3 = 0, (5)

where X, T1, 0 are harmonic functions of (Q, , z). The significant features of (3) and (4) are
that v, z = 0 and v2 = 0 on z = 0, whilst (5) represents a swirling flow with zero
component of velocity in the z-direction.

Suppose now that fluid fills the half-space z > 0 with z = 0 occupied by an infinite rigid
plate. Fluid motion in z > 0 is generated by a Stokeslet (point force) of unit strength placed
on the z-axis at a distance h from the bounding plane, and oriented parallel to the positive
Cartesian x-axis (see Fig. 1). In an infinite fluid the Stokeslet produces a velocity field v, (r, h)
with cylindrical components

(z - h)2} cos ,
{ 2R

sin 4
V - Ri' (6)

e(z - h)
w - - RX cos ,

where R1 = {Q2 + (z - h)2}1/ 2, the corresponding pressure field p, (r, h) being

Po = R cos 4. (7)

To solve the problem with the barrier z = 0 present we use (3), (5) and an image Stokeslet
to express the velocity and pressure fields as

v = v(r, h) + v,(r, -h) + zV ( a - z + VX0 + curl (Oz), (8)
O Oz J az

p = p (r, h) + p.(r, -h) + 2 az2 (9)

Writing the cylindrical polar components of velocity (u, v, w) as

u = ul(Q, z) cos , v = v,(,z) sin , w = w,(, z) cos ,

and the pressure p as P (, z) cos 4, then from (8) and (9),

= 2 ( )1 (z - h)2 + (z + h)2 } +z o + o + (10)
R 2 R. R2 1 eQZ O e

333



334 R. Shail and B.A. Packham

V7 -1 +1 IvI = - -
z aXo Xo ao0

e Oz e a'

w = { (z - h) (z + h) _z_2o

P l R= aZ2 

where R2 = {e2 + (z + h)2}'12. In (10) to (13) Xo and 00 are related to Xo and 0o by

Xo(Q, , z) = Xo(Q, z) cos , Eo(Q, z, )) = OO(Q, z) sin ,

and 00, Xo both satisfy the equation

I f a \
Q aQ \ aei

02f f
+ = 0.

0z 2

(11)

(12)

(13)

(14)

The functions Xo, 00 in (11)-(13) are required to be bounded as 2 + z 2 - oc, and must
be determined so that the no-slip conditions are satisfied on the boundary z = 0. Clearly (12)
ensures that w, = 0 on z = 0, whilst u, + v, = 0 on z = 0 requires that

(15)

where R = (2 + h2)112 . Integrating (15) and rejecting the complementary solution Xo - 00 =
const. e which is unbounded at infinity shows that

Xo - = - on z = 0, 0 Q < oo.

Similarly the requirement that ua - v, = 0 on z = 0 leads to the equation

C, 2(4h2 + 3 2)
Xo + 0 = on z = 0, 0 < oo,

Q OR

(16)

(17)

where C, is a constant of integration. In order that Xo + 00, and hence ul, v,, are bounded
on z = 0 as - 0, we must choose C, = 8h, whence (16) and (17) lead to the conditions

Xo(Q, O) =

Oo(Q, 0) =

4h _ 2 _ 4h 2

e R QR'
~4hp( R 40 O -< < oo.

- (h-R).
Q

(18)

a 1 1~~( h2 I) 

' - I XO - 00) = 2
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Using these boundary values, the determination of X and 00 can now be completed in an
elementary manner using solutions of (14) in the form of Hankel transforms of order one,
producing

o(, Z) = 2(z + 2h) 2h(h + z) 2R 2 (19)
Xo(Q, ) - , (19)

Q QR, e

4
00(Q, z) = - (h + z-R 2 ). (20)

All velocity and stress components etc. can now be computed explicity.

3. The pore-flow problems

We now turn to the problems described in the introduction in which a pore is modelled by
a circular hole in a thin rigid plate occupying z = 0 (see Fig. 2). The plate is surrounded by
viscous incompressible fluid and we label by I and II physical quantities pertaining to the
regions z > 0 and z < 0, respectively.

Suppose that in z > 0 there exists a flow (generated, for example, by singularities but with
no solid bodies present in z > 0) which, when z = 0 is a rigid barrier, has velocity and
pressure fields v, pt, where in cylindrical polar components

v = (u,(Q, z) cos , v0 (Q, z) sin 0, Wo(o, z) cos ),
(21)

P = Po(0, Z) cos .

Fig. 2. A Stokeslet placed parallel to the x-axis in front of a rigid plate containing a hole of unit radius.
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When the rigid plane is replaced by a plane with the circular region 0 < Q < 1, 0 < < 27t,
z = 0 removed, thus allowing communication with an infinite half-space of similar fluid
occupying z < 0, we represent the velocity fields by

vl (Q, 0, z) = (, ¢, z) + V(Q, 4, z), z > 0,
(22)

v"(e,4 ,z) = V(Q, ,z), z < 0,

where V = v, + v2 + v3 (see (3)-(5)). Since v vanishes on z = 0, (22) ensures that the
velocity is continuous across z = 0 if each of the harmonics X, (D, T is twice continuously
differentiable across z = 0 (except possibly at the rim of the hole) and even in z. The
associated pressure fields are

p'(Q, , z) = + A + P2, > 0,
(23)

pl(, 4, Z) = P1 + P2, Z < 0.

Analogous to
components

u' (e, z) =

v(eQ, z) =

wi(e, z) =

(10) through (13) we have in z > 0 the azimuthal-independent velocity

a2+ Ox 0 0¢
Uo(Q, z) + z - x + + Z ,aaZ aQ + a

z aZ x a zv0(, z) - - -O az aQ Q

02z 0 + +
wo 6, z)+ z + Z ¢, I

(24)

where X(Q, , z) = X(Q, z) cos ip etc., whereas in z < 0, u,' etc. follow from u' by omitting
the contributions with zero subscript. In a similar manner the corresponding azimuthal-
independent stress components in z > 0 are found as

UQz(Q, Z) = Qz(Q, z) + 2z -3X + 2 + + 2z 2aQ 
a O(QeZ2 z)z Q z aeazJI

(25)a,(e, z) = (, z) + 11 2 x 32 Z _ _ 03 az e aZ aeaz Q AZ

az2 z ) 'az (Q, ) = z(L, z) + (z z +

where in an obvious notation a° etc. are the stresses arising from the basic flow in z > 0.
(The azimuthal dependencies of the two shears and the normal stress are cos , sin 
and cos , respectively.) Again, in z < 0 a etc. is obtained from axz by omitting the
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zero-superscript basic-flow stresses. We now apply these representations to the shear-flow
and Stokeslet problems.

(a) Shear flow past the pore

Suppose that a shear flow parallel to the Cartesian x-axis exists in z > 0, the velocity
gradient being U; then in (21),

v = (Uz cos 4,-Uz sin , O), p = 0, (26)

and the stress components az etc. are

a°Q = pU, ai = -pU, ° = 0. (27)

Following the arguments leading to (16) and (17), (24),.2 and the no-slip conditions on
z = 0+, e > 1, require that

x(e,) = (e,0) = C, e > 1, (28)

where C, is a constant of integration to be determined. Similarly, from (24)3, the no-slip
condition on the z-component of velocity gives

(, 0) = 0, > 1. (29)

Across the mouth of the pore, the components of stress must be continuous. Forming
a + a,z in the regions I and II and taking account of (27) and the even parity of X and 0
in z, the resulting conditions are found as

2 -( , +) - (e,+ 0, (30)

and

a0 { (2 O (,O+) + ( 0'+)} = -U, (31)

both for 0 < e < 1. Integrating with respect to Q and rejecting a complementary solution
which is unbounded as Q -- 0 give

ax O0
2 = C2Q on z = 0+, 0 < e < 1,

and

2 X + a = _ = UQ on z = 0+, 0 < < 1,az az 
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i.e., on z = 0+, 0 < e < 1,

OX = I W2- U)0,
(32)

azaZ - WC2 + U)Q,

where C2 is a presently unknown constant of integration. The final stress continuity con-
dition on azz is easily found to yield

(,0+) = 0, 0 < 1, (33)

and it immediately follows from (29) and (33) that (e, z) = 0.
The mixed boundary-value problems for X, 0 in z > O are specified by (28) and (32)

and both have the same structure. Thus we write X = X + X2, where, on z = 0+, XI
satisfies

__l C(
aX, = O, 0 < 0 < x 1 , X , (34)

and for X2,

OX 2 - C
-¼ (C 2 - U)0, 0 e< 1, X2 = 0, > 1. (35)

Shail [8] has given the following expression for XI:

X (, z) = 1C[1l - Im {e2 + (z + i)2} 1/] 2(1 + 2)2 (1 + 1) ' (36)

where (, ) are oblate spheroidal coordinates with r + it? = {02 + (z + i)2}112. For X2 we
use a contour-integral type representation (Collins [9]) of the solution of (14) satisfying (35)2,
namely

X2(e, z) = (z + it) 2}(t) dt, (37)2 Q J-l {e2 + (z it)2}1/2

where g(t) is an even continuous function of t which, in order to ensure boundedness of X2
on the axis = 0, must satisfy the subsidiary condition

o g(t) dt = O. (38)
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(In (36), and (37) the radical is interpreted as

{02 + ( + it)2}1/2 = { (02 - t2) 1 if 0 > t,
i(t2 _ t 2)1/ 2 if e < t.

as z - 0+.)
Applying (35), produces the integral equation

o (2 _t 2)/2 dt = Q(C2 - U), 0 < e < 1,(39)

with solution

g(t) = -7 (
C 2 -U)t 2 + C3 , 0 < t 1,

the further constant C3 being evaluated in terms of C2 using (38) to provide

1
g(t) = 2 (C2 - U)(3 - t2), 0 < t < 1. (40)

Turning next to O (, z) which satisfies the mixed conditions (28), (32)2, we represent it as

0(Q, ) = X(Q, ) + { 2 + (z + i t)2} / 2 dt, (41)

where h(t) = h(-t) and

TO h(t) dt = O.

Repeating the arguments of the previous paragraph gives h(t) as

h(t) = -- (C2 + U) (- t 2), 0 < t < 1, (42)

and it remains to determine the constants C,, C2 . These are found by requiring that the shear
components 4a, oaz are no more singular than (2 - 1)-112 as - 1+ on z = 0+, con-
ditions which from (25)1,2 require that 02X/Ooaz and 02/Oeaz are no more singular than
(e2 - 1)- 1/2 as - 1 + on z = 0+. From (36), (37) and (36), (41) detailed calculation
shows that the appropriate singularity strengths imply that

C 1, - g(l) = 0, C, - h(l) = 0.

339
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Using (40) and (42) in (43), the constants C1 , C2 are

4U
Cl - 9 C2 = - U,

whence

g(t) = h(t) = U (t2 - (44)37r

and O(Q, z) X(Q, z).
The simple quadratic expression for g(t) makes an explicit determination of X(Q, z) a

straightforward matter for the shear-flow problem. Substituting (44) in (37) and effecting the
integration gives

2U 2U Uz
x(Q, z) = 2U + U Im {Q2 + (z + it)2 } 1/2 _ 3U Im [(z + i) {e 2 + (z + it)2}1 /2

+ 2 log [z + i + {e2 + (z + it)2}112 ]]. (45)

When expressed in terms of oblate spheroidal coordinates (4, i/) by means of the transforma-
tion

e = {(l - q2)(1 + 2))1/2, Z = 5,

with 4 + i = {Q2 + (z + i)2}1/2, 0 d 4 < 0, -1 < q < 1, (45) assumes, for z 0
(i.e., 0 < / < 1), the compact form

= (1 + )(1 + 42) {/(7 + 1)(2 + 32) + 2}

- 41{(l + 2)(1 -_ 
2 )}1/ 2 tan- l ) (46)

Indeed (46) can be deduced by working from the outset in terms of oblate spheroidal
harmonics; however, the method of solution we have given carries over immediately to the
Stokeslet problem which is not capable of a simple solution in spheroidal coordinates.

(b) The asymmetric Stokeslet problem

Consider next the configuration in which the basic flow in z > 0 is that due to a Stokeslet
of unit strength, placed on the z-axis at z = h and oriented parallel to the positive x-axis as
in Fig. 2. The velocity field v' is that provided by (8) with the Xo- and 00-parts of X0 and 00
given by (19), (20). The associated stresses can be evaluated everywhere in z > 0 but of
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particular interest are the values of o (e, 0+), a ,(Q, 0+) and a°z(Q, 0+), 0 < e < co,
which are found as

12h2
sz 0+) = R1R5

az(e,0+) 0, (47)

a°z(Q, 0+) = _ 1h R5

where R = (Q2 + h2 )1 /2 .

When the pore is present we use the same velocity and stress expressions as in the previous
problem, and the no-slip conditions on z = 0 +, > 1, again lead to (28) and (29) (with a
different value of C,). The stress continuity conditions across the mouth of the pore are
modified by using (47) instead of (27), but analogous calculations lead to the conditions

ex 00 20h
2 O- C2 + R3

(48)

ax 00 j16h 2h3 t

on z = 0+, 0 < < 1, where C2 , C3 are constants of integration. As in (17), the bounded-
ness of (48)2 as Q - 0 requires that C3 = -4, and on z = 0+, 0 < e < 1 we have

OX 1 + Qh
8z - ¼C2-- -+ R

e ~R +7, (49)

00 2 2h
-- 20 -- -+ -.

Similarly, from (47)3 continuity of normal stress requires that on z = 0+, 0 Q < 1,

a8 3eh2

=__ - 3eh2 (50)az R5 ()

Equations (28), (29), (49) and (50) now supply the mixed boundary conditions for the
determination of X, 0, , and each potential problem is of the same structure as in the
previous section.

Consider first (29) and (50); the representation

1Z)= IfI (z + it)j(t) dt (51)
( - {Q2 + ( + it)2 11/22g~~~~~~~~~~~~~~~~~~~(1

341
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where j(t) = j(-t) and FO j(t) dt = 0, satisfies (29) identically and (5) requires that

f j(t) 3h
2

ax-'- (Q2 t
2

)1/2 dt R- , 0 < Q < 1 (52)

The solution of this equation subject to the integral constraint is found as

j = (t2 + h2)2 h 2 1} 0< t < . (53)

In order to determine X we proceed as in the shear-flow problem using the decomposition
provided by (36) and (37). A lengthy calculation, similar to that leading to (40) but using
(49), in place of (32),, shows that now the relevant function g(t) in (37) is

g(t) = +-- (3 - t 2) 
+ - 1g + I

it 27t 7E \h2+lJ

t + h2- 2h tan ()} 0 < t < . (54)

Further, employing the decomposition (41) for 0 and condition (49)2, the function h(t)
appropriate to the present problem is

4 C 2 2 2 4 h (~)
h (t) = + (t -) log - tan-' 1I 0 < t < 1. (55)

rt ~ 3 E 2 + i it'

The two remaining constants C, and C2 are computed by invoking the minimum stress-
singularity conditions (43), whence

C , = {1 -h tan-' 3(h + 1)} (56)
7t 3(h 2 1)

C2 = - 2h+ (57)

The functions X, 0, 0 are now completely determined but unfortunately the somewhat
complicated nature ofj (t), g (t) and h (t) does not permit complete evaluation of the contour
integrals to give simple closed forms comparable with (45) and (46).

As an application of this solution we calculate an approximation to the drag experienced
by a small particle when incident with the z-axis and moving with a velocity Ui, where i is
a unit vector parallel to the x-axis. It is assumed that the particle translates without rotation
parallel to a principal axis of resistance, and we denote by - Fi and - F i the viscous drag
forces on the particle in the presence of the membrane and in an everywhere unbounded
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viscous fluid. Let c be the pore radius in physical units and set b = ch. Then, if a denotes
a typical dimension of the translating body, according to Brenner [3]

F 1
F -1 + O(a/l) 3, (58)

F. 1 - k(F./8Tc.Ub)

where I = max (b, c), and the drag factor k, is defined by

k, = -v*(Q) i. (59)

In (59) v*(Q) is the regular part of the velocity field in z > 0, that is v'(r) - v,(r, h),
evaluated at the centre Q(0, 0, h) of the body. Thus,

kl = -u*(e = O, z = h), (60)

where

2 (z -h) 2 a2 X0 aX0 0 002X OX 0 al
u= ) + z o+ X + _ + Z + X + + Za (61)

R, R2 aQ z ¥e e Q¥. aQ aQ

In (61), Xo and 00 are given by (19), (20), with X, 0, l as detailed in the previous paragraphs.
To evaluate (60) from (61) we begin by noting that

2Xo aOXo 0 5
z + + (62)

aQaZ ae e 4h

when = 0, z = h. We can also show that when z = h,

lim = 1 J' th'(t)
e-o Q 2 h2 + dt2 ,

li I tg'(t)
o 0 = 2 oh 2 + t ,

lim 0 2zlim -h h tg'(t) 0e- a z (h2 + t2)2

alim l 1 f~ (h2 - t
2)

o ae -2 2 o ( 2 + t) (t) .

Inserting these results in (61) then gives

u4h + t -dt th(t) (h2 t2){tg'(t) + hj(t)} (63)
U( 4h 2 J h±-t 2 2 Jo (h 2 + t2)2

343
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which on substituting (53) through (57) and integrating supplies the value

5 + 3h2 3
k, =2i(1 + h2)2 tan-' h. (64)

We note two limiting cases of (64); in the limit h - O, i.e., the particle is in the mouth of
the pore, we have

4
k, = - (65)

7[

whereas for large h,

3
k, 4h' (66)

the value appropriate to a Stokeslet placed parallel to and distance h from a rigid unper-
forated plate. For intermediate values of h, k, decreases monotonically from the value (65)
to zero as h -* oo. By combining (65) with the drag factor k 2given in [1] for the axisymmetric
case, namely

7E h + 1 + h2 (1 + h2)2 (67)

the drag force on a body crossing the pore axis at an arbitrary angle can be computed.
The approach of this section is easily applied to cases in which the Stokeslet is replaced

by other singularities such as rotlets, potential dipoles and stresslets, and other shear profiles
can be considered. The methods also form an essential ingredient in extending the calcula-
tions to encompass circular cylindrical pores of infinite or finite lengths when the flow field
is asymmetric. Results pertaining to these configurations will be reported in future papers.

4. Shear flow past an elliptic pore

Suppose that a shear flow parallel to the x-axis and given by (26) exists in z > 0, and that
the circular pore in z = 0 is replaced by one whose boundary is the ellipse

X2 y2
a-- + b- = 1.

Let S be the interior of this ellipse, and S the complement of S in z = 0. An appropriate
representation of the velocity fields in z > 0 and z < 0 in terms of two harmonic functions
f(x, y, z) and g(x, y, z), suggested by work in elasticity [10], is

v'(x, y, z) = Uzi + V(x, y, z), v"(x, y, z) = V(x, y, z), (68)
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where the Cartesian components of V are

Of 2f 2 f 2 g \
x = -az +z 2 + a

Vy=_g (+ z 02f+ 02g), (69)

Z = z -- z + '

the associated pressure field being

p = 2( Df a/2f (70)

In (69), (70) the harmonic functionsf and g are odd functions of z, and the relevant Cartesian
stress components in z > 0 follow as

x, = . U- f + 0x + - - j + 2z z ),
a2 ax aXay axaz

= ( f 2 g g + 2z Fy (71)
axay Td +2z Oyz'

02F
a 2zz 2z2

Dz2

where

Of +ag
F -+

ax Dy'

those in z < 0 resulting from setting U = 0 in (71).
From (69) the no-slip boundary conditions on S require that

f Og
= 0, = 0 onz = 0+, (x, y)E S, (72)az az

whilst from (71) continuity of a, and ay across S provide the conditions

a2f 2f 2g U
-- 0Z- 2x + ' xy - 2

onz = 0+, (x,y)eS. (73)
a2g D2g a

2f_FP, + T + a = 0
az2 Dy2 xay

Furtherf and g must tend to zero as x2 + y2 + z2 , oo.
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In order to determine f and g from (72), (73) we introduce ellipsoidal coordinates (, /3, y),
related to Cartesian coordinates by the transformation

x = ak2 snct sn/i sny,

y = -ak 2k'- ' cn cn# cny, (74)

z = iak'-' dna dn# dny,

where k, the eccentricity of the ellipse x2/a2 + y2/b2 = 1, is the modulus of the Jacobian
elliptic functions in (74) and k' = (1 - k2 )1/2 is the complementary modulus. To obtain
all values of x, y and z, it is necessary for ac, /3 and y to vary in the ranges from -2K
to 2K, #/ from K to K + 2iK', y from iK' to K + iK', where K(k) and K' = K(k') are
the usual complete elliptic integrals of the first kind. The coordinate surfaces = constant
and = constant are hyperboloids of two sheets and one sheet, respectively, whilst
y = constant is an ellipsoid. In particular y = K + iK' gives S and /B = K + iK' corre-
sponds to S.

Consider the region z > 0; sincefis harmonic so is f/az, and using ellipsoidal harmonic
functions given in [11, 12] we express the derivative as

f d(y) ()
az = A dncc dnf/ dF( (iK '75)

where A is a constant and dF (y) a Lame function of the second kind given by

k n dny

with E(y) = I dn2u du, an elliptic integral of the second kind. Similarly, writing

Og dF (y)
& = B dnac dn d (77)

for some constant B, (72) is satisfied by virtue of the fact that dn (K + iK') = 0.
In order to apply (73) the various second-order derivatives off and g must be evaluated

on S. We first note that on S,

af = Adna dn = Ak'( - 2

whence

aZ /af Ak' 2k snc sn/3
a x = - (78)a, ( If Ox dnt dn B



Some asymmetric Stokes-flow problems

Now, on S, /0z = - a/a dnc dn3 ay, and (78) can be rewritten as

a ( Of = Ak' 2 k sna snf on S.

Thus,

Of = Ak'2 k sna snp sFO(Ky) (79)
ax sF1 '(K + iK')'

where sF°(y) is a further Lame function of the second kind given by

sFI(y) = 3k sny {y - iK' - E(y - iK')}. (80)

In particular on S, i.e, y = K + iK', (78) shows that

af Ak' 2 (K - E)
ax ak2

where E(k) is the complete elliptic integral of the second kind. It now follows from (81) that
on S

a2f Ak' 2(K - E)
ax2 ak2 (82)

02f
_ -= 0.

axay

The remaining derivative a2f/laz2 on S is obtained directly from (75) as

af AE=0 t E(83)
az2 a

using the previously quoted expression for a/az.
It is immediately apparent from (82)2 and (73)2 that B = 0 and g = 0, whilst (82), (83)

and (73)7 require that

AE Ak'2 (K- E) U
- + =(84)
a ak2 2'

that is

a k2

A = - ak2 k2 k2K'(85)
21(k' k 12)E k 2KI'

and the solution is complete.
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As an example of a quantity of physical interest, consider the components of velocity in
the pore mouth y = K + iK'. We have that when y = K + iK',

1 Of auk 2

a -z 2(k 2 - k' 2 )E + k' 2 K} dn dnf

aUk2 k' kK X Y l

2{(k2 - k2) E + 2K } I a2 b2

and

v} = o. (87)

In the limit k -* 0,

vx' 3 2 (88)

a result for a circular pore of radius a which can be verified using the solution of Section 3(a).
Equations (86), (87) indicate that in the pore mouth the fluid velocity is parallel to the shear
and is constant on ellipses concentric with and similar to the boundary of the pore. Note also
that the appropriate slit solution of Smith [5] can be recovered by a suitable limiting process
applied to the semi-axes of the ellipse.
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